135 research outputs found

    Open Markov processes: A compositional perspective on non-equilibrium steady states in biology

    Full text link
    In recent work, Baez, Fong and the author introduced a framework for describing Markov processes equipped with a detailed balanced equilibrium as open systems of a certain type. These `open Markov processes' serve as the building blocks for more complicated processes. In this paper, we describe the potential application of this framework in the modeling of biological systems as open systems maintained away from equilibrium. We show that non-equilibrium steady states emerge in open systems of this type, even when the rates of the underlying process are such that a detailed balanced equilibrium is permitted. It is shown that these non-equilibrium steady states minimize a quadratic form which we call `dissipation.' In some circumstances, the dissipation is approximately equal to the rate of change of relative entropy plus a correction term. On the other hand, Prigogine's principle of minimum entropy production generally fails for non-equilibrium steady states. We use a simple model of membrane transport to illustrate these concepts

    Relative Entropy in Biological Systems

    Full text link
    In this paper we review various information-theoretic characterizations of the approach to equilibrium in biological systems. The replicator equation, evolutionary game theory, Markov processes and chemical reaction networks all describe the dynamics of a population or probability distribution. Under suitable assumptions, the distribution will approach an equilibrium with the passage of time. Relative entropy - that is, the Kullback--Leibler divergence, or various generalizations of this - provides a quantitative measure of how far from equilibrium the system is. We explain various theorems that give conditions under which relative entropy is nonincreasing. In biochemical applications these results can be seen as versions of the Second Law of Thermodynamics, stating that free energy can never increase with the passage of time. In ecological applications, they make precise the notion that a population gains information from its environment as it approaches equilibrium.Comment: 20 page

    Open Markov Processes and Reaction Networks

    Full text link
    We define the concept of an `open' Markov process, a continuous-time Markov chain equipped with specified boundary states through which probability can flow in and out of the system. External couplings which fix the probabilities of boundary states induce non-equilibrium steady states characterized by non-zero probability currents flowing through the system. We show that these non-equilibrium steady states minimize a quadratic form which we call `dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.Comment: 140 pages, University of California Riverside PhD Dissertatio

    Network Models

    Full text link
    Networks can be combined in various ways, such as overlaying one on top of another or setting two side by side. We introduce "network models" to encode these ways of combining networks. Different network models describe different kinds of networks. We show that each network model gives rise to an operad, whose operations are ways of assembling a network of the given kind from smaller parts. Such operads, and their algebras, can serve as tools for designing networks. Technically, a network model is a lax symmetric monoidal functor from the free symmetric monoidal category on some set to Cat\mathbf{Cat}, and the construction of the corresponding operad proceeds via a symmetric monoidal version of the Grothendieck construction.Comment: 46 page
    corecore